2021

Kim PH, Chen N, Heizer P, Tu Y, Yang Y, Weston TA, Gill NK, Rowat AC, Young SG, Fong LG. (2021) Nuclear membrane ruptures underlie the vascular pathology in a mouse model of Hutchinson-Gilford progeria syndromeJCI Insight. 6(16): 151515. doi: 10.1172/jci.insight.151515.

Chen N, Kim PH, Tu Y, Yang Y, Heizer P, Young SG, Fong LG. (2021) Increased expression of LAP2β eliminates nuclear membrane ruptures in nuclear lamin-deficient neurons and fibroblasts. Proc. Natl. Acad. Sci USA. doi: 10.1073/pnas.2107770118.

2020

Chen N, Kim PH, Fong LG, Young SG. (2020) Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficienciesNucleus. 11(1): 237–249. doi: 10.1080/19491034.2020.1815410.

Heizer P, Yang Y, Tu Y, Kim PH, Chen NY, Hu Y, Yoshinaga Y, de Jong PJ, Vergnes L, Morales JE, Li RL, Jackson NJ, Reue K, Young SG, Fong LG. (2020) Deficiency in ZMPSTE24 and Resulting farnesyl-Prelamin A Accumulation Only Modestly Affect Mouse Adipose Tissue StoresJ Lipid Res. Jan 15. doi: 10.1194/jlr.RA119000593.

2019

Chen NY, Yang Y, Weston TA, Belling JN, Heizer P, Tu Y, Kim P, Edillo L, Jonas SJ, Weiss PS, Fong LG, Young SG. (2019) An Absence of Lamin B1 in Migrating Neurons Causes Nuclear Membrane Ruptures and Cell Death. Proc. Natl. Acad. Sci. USA Dec 17. doi: 10.1073/pnas.1917225116.

Gill NK, Ly C, Kim PH, Saunders CA, Fong LG, Young SG, Gant Luxton GW, Rowat AC. (2019) DYT1 dystonia patient-derived fibroblasts have increased deformability and susceptibility to damage by mechanical forces. Frontiers in Cell and Developmental Biology (in press). 

2018

Kim PH, Luu J, Heizer P, Tu Y, Weston TA, Chen N, Lim C, Li RL, Lin PY, Dunn JCY, Hodzic D, Young SG, Fong LG. Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. (2018) Sci Transl Med. 2018 Sep 26;10(460). pii: eaat7163. doi: 10.1126/scitranslmed.aat7163. PMC6166472

Chen NY, Kim P, Weston TA, Edillo L, Tu Y, Fong LG, Young SG. (2018) Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. Proc. Natl. Acad. Sci USA 2018 Oct 2;115(40):10100-10105. doi: 10.1073/pnas.1812622115. Epub 2018 Sep 17. PMC6176609

Levy Y, Ross JA, Niglas M, Snetkov VA, Lynham S, Liao C-Y, Puckelwartz MJ, Hus, Y-M, Mcnally EM, Asheimer M, Harridge SDR, Young SG, Fong LG, Español Y, Lopez-Otin C, Kennedy BK, Lowe DA, Ochala J. (2018) Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight 2018 Oct 4;3(19). pii: 120920. doi: 10.1172/jci.insight.120920. [Epub ahead of print]. PMC6237469.

2016

Razafsky D, Ward C, Potter C, Zhu W, Xue Y, Kefalov VJ, Fong LG, Young SG, Hodzic D. (2016) Lamin B1 and lamin B2 are long-lived proteins with distinct functions in retinal development. Mol Biol Cell. 27:1928–1937. PMC4907726

Lee JM, Nobumori C, Tu Y, Choi C, Yang SH, Jung HJ, Vickers TA, Rigo F, Bennett CF, Young SG, and Fong SG. (2016) Modulation of LMNA splicing as a strategy to treat prelamin A diseases. J. Clin. Invest. 126:1592–1602. PMC4811112

2015

Yang SH, Procaccia S, Jung JH, Tatar A, Tu Y, Bayguinov YR, Hwang SJ, Tran D, Ward SM, Fong LG, Young SG. (2015) Mice that express farnesylated versions of prelamin A in neurons develop achalasia. Hum Mol. Genet. 24:2826–2840. PMC4406294

2014

Jung H-J, Tu Y, Nobumori C, Yang SH, Herrmann H, Fong LG, and Young SG (2014) An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol. Cell. Biol. 4:4534–4544. PMC4248738

Lee JM, Jung, H-J, Fong LG, and Young, SG. (2014) Do lamin B1 and lamin B2 have redundant functions? Nucleus 5:287–292. PMC4152341

Young, SG, Jung, H-J, Lee JM, and Fong LG. (2014) Nuclear lamins and neurobiology. Mol. Cell Biol. 34:2776–2785. PMC4135577

Lee JM, Tu Y, Tatar A, Wu D, Nobumori C, Jung HJ, Yoshinaga Y, Coffinier C, de Jong PJ, Fong LG, Young SG. (2014) Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2. Mol Biol Cell. 25:1666–1675. PMC4019497

Jung, H-J, Tu Y, Yang SH, Tatar A, Nobumori C, Wu D, Young SG, Fong LG. (2014) New Lmna knock-in mice provide a molecular mechanism for the 'segmental aging' in Hutchinson-Gilford progeria syndrome. Hum Mol. Genet. 23:1506–1515. PMC3929089

2013

Jung, H-J, Nobumori C, Goulbourne CN, Tu Y, Lee JM, Tatar A, Wu D, Yoshinaga Y, de Jong, PJ, Coffinier C, Fong LG, Young SG. (2013) Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. USA 110:E1923–32. PMC3666708

Young SG, Yang SH, Davies BS, Jung HJ, Fong LG. (2013) Targeting protein prenylation in progeria. Sci Transl Med. 6:171. PMC3725554

Jung H-E, Lee JM, Yang SH, Young SG, Fong LG. (2013). Nuclear lamins in the brain—new insights into function and regulation. Molec. Neurobiology 47:290–301. PMC3538886

2012

Chang SY, Farber E, Hudon SE, Yang SH, Adres DA, Spielmann HP, Hrycyna CA, Young SG, Fong LG. (2012) Inhibitors of protein geranylgeranyltransferase-I lead to prelamin A accumulation by inhibiting ZMPSTE24. J. Lipid Res. 53:1176-1182. PMC3351824

Young SG, Jung HJ, Coffinier C, Fong LG. (2012) Understanding the roles of nuclear A- and B-type lamins in brain development. J. Biol. Chem. 287:16103-16110. PMC3351360

Jung H-J, Coffinier C, Choe Y, Beigneux AP, Daveies BSF, Yang SH, Barnes RH, Hong J, Sun T, Pleasure SF, Young SG, Fong LG. (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci USA 109:E423-31. PMC3289373

2011

Yang SH, Jung H-J, Coffinier C, Fong LG, Young SG. (2011) Are B-type lamins essential in all mammalian cells? Nucleus 2: 562–569. PMC3324344

Yang SH, Chang SY, Tu Y, Lawson GW, Bergo MO, Fong LG, Young SG. (2011) Severe hepatocellular disease in mice lacking one or both CaaX prenyltransferases. J. Lipid Res. 53:77–86. PMC3243483

Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, Barnes RH 2nd, Yoshinaga Y, de Jong PJ, Vergnes L, Reue K, Fong LG, Young SG (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Biol. Cell. 22:4683-93. PMC3226484

Yang SH, Chang SY, Yin L, Tu Y, Hu Y, Yoshinaga Y, de Jong PJ, Fong LG, Young SG. (2011) An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum Mol Genetics 20:3537–3544. PMC3159554

Davies BSJ, Coffinier C, Yang SH, Barnes RH, Jung HJ, Young SG, Fong LG. (2011) Investigating the purpose of prelamin A processing. Nucleus 2:4–9. PMC3104803

2010

Yang SH, Chang SY, Ren S, Wang Y, Andres DA, Spielmann HP, Fong LG, Young SG. (2010) Absence of progeria-like disease phenotypes in knock-in mice expressing a nonfarnesylated version of progerin. Hum Mol Genet. 20:436–444. PMC3016906

Coffinier C, Fong LG, Young SG. (2010) LINCing lamin B2 to neuronal migration: growing evidence for cell-specific roles of B-types lamin. Nucleus 1:407–411. PMC3027074

Davies BS, Barnes RH II, Tu Y, Ren S, Andres DA, Spielmann HP, Lammerding J, Wang Y, Young SG, Fong LG. (2010) An accumulation of nonfarnesylated prelamin A causes cardiomyopathy but not progeria. Hum. Mol. Genet. 19:2692–2694.

Coffinier C, Jung HJ, Li Z, Nobumori C, Yun UJ, Farber EA, Davies BS, Weinstein MM, Yang SH, Lammerding J, Farahani JN, Bentolila LA, Fong LG, Young SG. (2010) Direct synthesis of lamin A, bypassing prelamin A processing, causes misshapen nuclei in fibroblasts but no detectable pathology in mice. J. Biol. Chem. 285:20818–20826. PMC2898298

Coffinier C, Chang SY, Nobumori C, Farber EA, Toth J, Fong LG, Young SG. (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl. Acad. Sci. USA 107:5076–5081. PMC2841930

Yang SH, Andres DA, Speilmann HP, Young SG, Fong LG. (2010) Assessing the efficacy of protein farnesyltransferase inhibitors in mouse models of progeria. J. Lipid Res. 51:400–405. PMC2803242

2009

Lee R, Chang SY, Trinh H, White AC, Bergo MO, Fong LG, Lowry WE, Young SG. (2009) Genetic analysis of the importance of the protein prenyltransferases in skin keratinocytes. Hum. Molecular Gen. 19:1603–1617. PMC2846164

Worman HJ, Fong LG, Muchir A, Young SG. (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119:1825–1836. PMC2701866

Fong LG, Vickers TA, Farber EA, Choi C, Yun UJ, Hu Y, Yang SH, Coffinier C, Lee R, Yin L, Davies BS, Andres DA, Spielmann HP, Bennett CF, Young SG. (2009) Activating the synthesis of progerin, the mutant prelamin A in Hutchinson-Gilford progeria syndrome with antisense oligonucleotides. Hum. Mol. Genet. 18:2462–2471. PMC2694694

Davies BS, Fong LG, Yang SH, Coffinier C, Young SG. (2009) The posttranslational processing of prelamin A and disease. Ann. Rev. Genetics and Genomics 10:153–174. PMC2846822

2008

Davies BS, Yang SH, Farber E, Lee R, Buck SB, Andres DA, Spielmann HP, Agnew BJ, Tamanoi F, Fong LG, Young SG. (2008) Increasing the length of progerin's isoprenyl anchor does not worsen bone disease or survival in mice with Hutchinson-Gilford progeria syndrome. J. Lipid Res. 50:126–134. PMC3837462

Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG. (2008) Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J. Clin. Invest. 118:3291–3300. PMC2525700

Coffinier C, Hudon SE, Lee R, Farber EA, Nobumori C, Miner JH, Andres DA, Spielmann HP, Hrycyna CA, Fong LG, Young SG. (2008) A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells. J. Biol. Chem. 283:9797–9804. PMC2442292

Yang SH, Qiao X, Farber E, Chang SY, Fong LG, Young SG. (2008) Eliminating the synthesis of mature lamin A reduces phenotypes in mice carrying a Hutchinson-Gilford progeria syndrome allele. J. Biol. Chem. 283:7094–7099.

2007

Coffinier C, Hudon SE, Farber EA, Chang SY, Hrycyna CA, Young SG, Fong LG. (2007) From the Cover: HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells. Proc. Natl. Acad. Sci. USA 104:13432–13437. PMC1948915

Moulson CL, Fong LG, Gardner JM, Farber EA, Go G, Passariello A, Grange DK, Young SG, Miner JH. (2007) Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Hum Mutat. 28:882–889.

Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J. (2007) Cell nuclei spin in the absence of lamin B1. J. Biol. Chem. 282:20015–20026.

2006

Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LF. (2006) A protein farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Invest. 116:2115–2121. PMC2266774

Fong LG, Frost D, Meta M, Qiao X, Yang SH, Coffinier C, Young SG. (2006) A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria. Science. 311:1621–1623.

Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Coté N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG. (2006) Prelamin A and lamin A appear to be dispensable: Implications for the treatment of progeria. J. Clin. Invest. 116:743–752. PMC1386109

2005

Young SG, Fong LG, Michaelis S. (2005) Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—New evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 46:2531–2558.

Toth JI, Yang SH, Qiao X, Beigneux AP, Gelb MH, Moulson CL, Miner JH, Young SG, Fong LG. (2005) Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proc. Natl. Acad. Sci. USA 102:12873–12878. PMC1193538

Yang, S.H., Bergo, M.O., Toth, J.I., Qiao, X., Hu, Y., Sandoval, S., Meta, M., Bendale, P., Gelb, M.H., Young, S.G., and Fong, L.G. 2005. Blocking protein farnesyltransferase improves nuclear blebbing in mouse fibroblasts with a targeted Hutchinson-Gilford progeria syndrome mutation. Proc Natl Acad Sci USA 102:10291-10296. PMC1174929

2004

Fong LG, Ng JK, Meta M, Coté N, Yang SH, Burghardt A, Majumdar S, Reue K, Bergo MO, Young SG. (2004) Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proc. Natl. Acad. Sci. USA 101:18111–18116. PMC536056

2021

He C, Migawa MT, Chen K, Weston TA, Song W, Tanowitz M, Guagliardo P, Iyer KS, Bennett CF, Fong LG, Seth PP, Young SG, Jiang H. (2021) High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS)Nucleic Acids Research. 49(1): 1–14. doi: 10.1093/nar/gkaa1112.

2020

Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. (2020) Chylomicronemia from GPIHBP1 autoantibodiesJ. Lipid Res. 61(11): 1365–1376. doi: 10.1194/jlr.R120001116.

Luz J, Beigneux A, Asamoto DK, He C, Song W, Allan CM, Morales JE, Tu Y, Kwok A, Cottle T, Meiyappan M, Fong LG, Kim J, Ploug M, Young SG, Birrane G. (2020) The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipaseJ. Lipid Res. 61(10): 1347–1359. doi: 10.1194/MCB.00255-20.

He C, Song W, Weston TA, Tran C, Kurtz I, Zuckerman JE, Guagliardo P, Miner JH, Ivanov SV, Bougoure J, Hudson BG, Colon S, Voziyan PA, Bhave G, Fong LG, Young SG, Jiang H. (2020) Peroxidasin-mediated bromine enrichment of basement membranesProc. Natl. Acad. Sci USA. 117(27): 15827–15836. doi: 10.1073/pnas.2007749117.

Lutz J, Dunaj-Kazmierowska M, Arcan S, Kassner U, Miyashita K, Murakami M, Ploug M, Fong LG, Young SG, Nakajima K, Beigneux A. (2020) Chylomicronemia from GPIHBP1 autoantibodies successfully treated with rituximab: a case reportAnn. Intern. Med. 173(9): 764–765. doi: 10.7326/L20-0327.

Jiang H, He C, Fong LG, Young SG. (2020) The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes. (Images in Lipid Research). J. Lipid Res. 61(6): 815. doi: 10.1194/jlr.ILR120000783.

Meng X, Zeng W, Young SG, Fong LG. (2020) GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells (Images in Lipid Research). J. Lipid Res. 61(5): 591. doi: 10.1194/jlr.ILR120000735.

He C, Jiang H, Song W, Riezman H, Tontonoz P, Weston TA, Guagliardo P, Kim PH, Jung R, Heizer P, Fong LG, Young SG. (2020) Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proc. Natl. Acad. Sci. USA 2020 May 12. doi: 10.1073/pnas.1922879117. Epub 2020 Apr 30.

Belling JN, Heidenreich LK, Tian Z, Mendoza AM, Chiou TT, Gong Y, Chen NY, Young TD, Wattanatorn N, Park JH, Scarabelli L, Chiang N, Takahashi J, Young SG, Stieg AZ, De Oliveira S, Huang TJ, Weiss PS, Jonas SJ. (2020) Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc. Natl. Acad. Sci. USA 2020 May 1. doi: 10.1073/pnas.1917125117. [Epub ahead of print].

Kristensen KK, Leth-Espensen KZ, Young SG, Ploug M. (2020) ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPL's hydrolase domain. J Lipid Res. 2020 Apr 23. pii: jlr.ILR120000780. doi: 10.1194/jlr.ILR120000780. [Epub ahead of print].

Kristensen KK, Leth-Espensen KZ, Mertens HDT, Birrane G, Meiyappan M, Olivecrona G, Jorgensen TJD, Young SG, Ploug M. (2020) Unfolding of Monomeric Lipoprotein Lipase by ANGPTL4: Insight Into the Regulation of Plasma Triglyceride Metabolism. Proc. Natl. Acad. Sci. USA Feb 7. doi: 10.1073/pnas.1920202117.

2019

Hu X, Weston TA, He C, Jung RS, Heizer PJ, Young BD, Tu Y, Tontonoz P, Wohlschlegel JA, Jiang H, Young SG, Fong LG. (2019) Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia. Elife. pii: e50231. doi: 10.7554/eLife.50231. [Epub ahead of print]

Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G Ploug M. (2019) GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism. Cell Metab. 30: 51–65.

Hu X, Matsumoto K, Jung RS, Weston TA, Heizer PJ, He C, Sandoval NP, Allan CM, Tu Y, Vinters HV, Liau LM, Ellison RM, Morales JE, Baufeld LJ, Bayley NA, He L, Betshotlz C, Beigneux AP, Nathanson DA, Gerhardt H, Young SG, Fong LG, Jiang H. (2019) GPIHBP1 expression in gliomas promotes utilization of lipoprotein–derived nutrientsElife pii: e47178. doi: 10.7554/eLife.47178. [Epub ahead of print]

Beigneux, AP, Allan CM, Sandoval NP, Cho GW, Heizer PJ, Jung RS, Stanhope KL, Havel PJ, Birrane G, Meiyappan M, Gill JE, Murakami M, Miyashita K, Nakajima K, Ploug M, Fong LG, Young SG. (2019) Lipoprotein lipase is active as a monomer. Proc. Natl. Acad. Sci. USA Mar 8. pii: 201900983. doi: 10.1073/pnas.1900983116. [Epub ahead of print]

2018

Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Morales JE, Sajti E, Troutman TD, Saunders TL, Cusanovich DA, Beigneux AP, Romanoski CE, Fong LG, Young SG. An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. J Lipid Res. 2018 Dec 31. pii: jlr.M091322. doi: 10.1194/jlr.M091322. [Epub ahead of print]

He C, Hu X, Weston TA, Jung RS, Heizer P, Tu Y, Ellison R, Matsumoto K, Gerhardt H, Tontonoz P, Fong LG, Young SG, Jiang H. (2018) NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochem Biophys Res Commun. 2018 Oct 12;504(4):899-902. doi: 10.1016/j.bbrc.2018.09.051. Epub 2018 Sep 15.

Birrane G, Beigneux AP, Dwyer B, Strack-Logue B, Kristensen KK, Francone OL, Fong LG, Mertens HDT, Pan CQ, Ploug M, Young SG, Meiyappan M. (2018) Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc Natl Acad Sci U S A. 2018 Dec 17. pii: 201817984. doi: 10.1073/pnas.1817984116.

He C, Hu X, Weston TA, Jung RS, Sandhu J, Huang S, Heizer P, Kim J, Ellison R, Xu J, Kilburn M, Bensinger SJ, Riezman H, Tontonoz P, Fong LG, Jiang H, Young SG (2018) Macrophages release plasma membrane–derived particles rich in accessible cholesterol. Proc. Natl. Acad. Sci USA m 2018 Sep 4;115(36):E8499-E8508. doi: 10.1073/pnas.1810724115. Epub 2018 Aug 20.  PMC6130402.

Kristensen KK, Midtgaard SR, Mysling S, Kovrov O, Hansen LB, Skar-Ginsling N, Beigneux AP, Kragelund BK, Olivecrona G, Young SG, Jørgensen, Fong LG, Ploug M.  (2018) Disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc. Natl. Acad. Sci USA 115: E6020-E6029. PMC6042107.

He C, Weston TA, Jung RS, Heizer P, Larsson M, Hu X, Allan CM, Tontonoz P, Reue K, Beigneux AP, Ploug M, Holme A, Kilburn M, Guagliardo P, Ford DA, Fong LG, Young SG, Jiang H. (2018) NanoSIMS analysis of intravascular lipolysis and lipid movement across capillaries and into cardiomyocytes. Cell Metab. 27:1055–1066.e3. PMC5945212

Larsson M, Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Walzem RL, Beigneux AP, Young SG, and Fong LG. (2018) Impaired thermogenesis and sharp increases in plasma triglyceride levels in GPIHBP1-deficient mice during cold exposure. J. Lipid Res. 59:706–713. PMC5880501

He C, Hu X, Weston TA, Jung RS, Sandhu J, Huang S, Heizer P, Kim J, Ellison R, Xu J, Kilburn M, Bensinger SJ, Riezman H, Tontonoz P, Fong LG, Jiang H, Young SG (2018) Macrophages release plasma membrane–derived particles rich in accessible cholesterol. Proc. Natl. Acad. Sci USA Sep 4;115(36):E8499-E8508. doi: 10.1073/pnas.1810724115. Epub 2018 Aug 20.

2017

He C, Hu X, Jung R, Larsson M, Tu Y, Vogel SD, Kim P, Sandoval NP, Allan CM, Bensadoun A, Walzem R, Kuo R, Beigneux AP, Fong LG, and Young SG. (2017) Lipoprotein lipase is found in the capillary lumen of chickens despite an apparent absence of GPIHBP1. JCI Insight 2(20). pii: 96783. doi: 10.1172/jci.insight.96783. PMC5846916

Hu X, Dallinga-Thie GM, Hovingh GK, Chang SY, Sandoval NP, Dang TLP, Fukamachi I, Miyashita K, Nakajima K, Murakami M, Fong LG, Ploug M, Yung SG, and Beigneux AP. (2017) GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J. Clin. Lipidology 11: 964–971 [PMC 5568906]

Allan CM, Jung CJ, Larsson M, Heizer PJ, Tu Y, Sandoval NP, Dang TLP, Jung RS, Beigneux AP, de Jong PJ, Fong LG, Young SG. (2017) Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res. 58:1453–1461 [PMC 5496041]

He C, Hu X, Jung RS, Weston TA, Sandoval NP, Tontonoz P, Kilburn M, Fong LG, Young SG, Jiang H. (2017) High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proc. Natl. Acad. Sci. USA 114:2000–2005. [PMC5338444]

Beigneux AP, Miyashita K, Ploug M, Blom DJ, Ai M, Linton MF, Khovidhunkit W, Dufour R, Garg A, McMahon MA, Pullinger CR, Sandoval NP, Hu X, Allan CM, Larsson M, Machida MT, Murakami M, Reue K, Tontonoz P, Goldberg IJ, Moulin P, Charrière S, Fong LG, Nakajima K, and SG Young. (2017) Autoantibodies against GPIHBP1 as a cause of hypertriglyceridemia. New Engl. J. Med. 376:1647–1658. doi: 10.1056/NEJMoa1611930. PMC5555413

Hu, X., M. W. Sleeman, K. Miyashita, M. F. Linton, C. M. Allan, C. He, M. Larsson, Y. Tu, N. P. Sandoval, R. S. Jung, A. Mapar, T. Machida, M. Murakami, K. Nakajima, M. Ploug, L. G. Fong, S. G. Young, and A. P. Beigneux. 2017. Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. J Lipid Res 58:208–215. PMC5234723

2016

Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG (2016). Mobility of HSPG-bound LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 58:216–225. PMC5234724

Allan CM, Larsson M, Hu X, He C, Jung RS, Mapar A, Voss C, Miyashita K, Machida T, Murakami M, Nakajima K, Bensadoun A, Ploug M, Fong LG, Young SG, Beigneux AP (2016). A lipoprotein lipase (LPL)-specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. J Lipid Res. 57:1889–1898. PMC5036369

Fong LG, Young SG, Beigneux AP, Bensadoun A, Oberer M, Jiang H, Ploug M. (2016). GPIHBP1 and plasma triglyceride metabolism. Trends in Endocrinology and Metabolism 27:455–469. doi: 10.1016/j.tem.2016.04.013. PMC4927088

Dijk W, Beigneux AP, Fong LG, Larsson M, Young SG, and Kersten S. Angiopoietin-like 4 (ANGPTL4) promotes intracellular degradation of lipoprotein lipase in adipocytes. (2016) J Lipid Res. 57:1670–1683. PMC5003152

Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadoun A, Jørgensen TJD, Young SG, Ploug M. (2016) The acidic domain of the endothelial cell protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. Elife. 2016 Jan 3;5:e12095. doi: 10.7554/eLife.12095. PMC4755760

2015

Beigneux AP, Fong LG, Bensadoun A, Davies BS, Oberer M, Gårdsvoll H, Ploug M, Young SG (2015) GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding. Circ. Res. 116:624–632. PMC4329087

2014

Plengpanich W, Young SG, Khovidhunkit W, Bensadoun A, Karnman H, Ploug M, Gardsvoll H, Leung CS, Adeyo O, Larsson M, Muanpetch S, Charoen S, Fong LG, Niramitmahapanya S, Beigneux AP (2014) Multimerization of GPIHBP1 and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1’s Ly6 domain. J. Biol. Chem. 289:19491–19499. PMC4094059

Goulbourne CN, Gin P, Tatar A, Nobumori C, Hoenger A, Jiang H, Grovenor CRM, Adeyo O, Esko JD, Goldberg IJ, Reue, K, Tontonoz P, Bensadoun A, Beigneux AP, Young SG, Fong LG. (2014) The GPIHBP1–LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab. 19:849–860. PMC4143151

2012

Davies BJS, Goulbourne CN, Barnes RH, Turlo KA, Gin P, Vaughan S, Vaux DJ, Bensadoun A, Beigneux AP, Fong LG, Young SG. (2012). Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. J. Lipid Res. 53:2690-2697. PMC3494248

Gin P, Goulbourne CN, Adeyo O, Beigneux AP, Davies BSJ, Tat S, Voss CV, Bensadoun A, Fong LG, Young SG (2012) Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Human Mol. Genetics 21:2961-2972. PMC3373243

Weinstein MM, Goulbourne C, Davies BSK. Tu Y, Barnes RH, Watkins SM, Davis R, Reue K, Tontonoz P, Beigneux AP, Fong LG, Young SG. (2012) Reciprocal metabolic perturbations in the adipose tissue and liver of GPIHBP1-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32:230–235. PMC3281771

2011

Beigneux AP, Davies BSJ, Tat S, Chen J, Gin P, Voss CV, Weinstein MM, Bensadoun A, Pullinger C, Fong LG, Young SG. (2011) Assessing the role of glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1’s three-finger domain in binding lipoprotein lipase. J. Biol. Chem. 286:19735–19743. PMC3103352

Voss CV, Davies B, Shelly Tat, Gin P, Fong LG, Pelletier C, Mottler C, Bensadoun A, Beigneux AP, Young SG. (2011) Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proc. Natl. Acad. Sci. USA, 108:7980–7984. PMC3093490

2010

Olafsen T, Young SG, Davies BSJ, Kenanova VE, Voss C, Young G, Wong K-P, Branes RH, Tu Y, Weinstein MM, Nobumori C, Huang S-C, Goldberg IJ, Bensadoun A, Wu, AM, Fong LG. (2010) Unexpected expression pattern for glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning. J. Biol. Chem. 285:39239–39248. PMC2998116

Gin P, Beigneux AP, Voss C, Davies BSJ, Beckstead JA, Ryan RO, Bensadoun A, Fong LG, Young SG. (2010) Binding preferences for GPIHBP1, a GPI-anchored protein of capillary endothelial cells. Arterioscler Thromb Vasc Biol. 30:2106–2113. PMC3004026

Weinstein MM, Tu Y, Beigneux AP, Davies BS, Gin P, Voss C, Walzem RL, Reue K, Tontonoz P, Bensadoun A, Fong LG, Young SG. (2010) Cholesterol intake modulates plasma triglyceride levels in GPIHBP1-deficient mice. Arterioscler Thromb Vasc Biol. 31:176–182. PMC2959134

Davies BS, Beigneux AP, Barnes RH II, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyrén R, Goldberg I, Olivecrona G, Bensadoun A, Young SG, Fong LG. (2010) GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metabolism 12:42–52. PMC2913606

Franssen R, Young SG, Peelman F, Hertecant J, Sierts JA, Schimmel AW, Bensadoun A, Kastelein JJ, Fong LG, Dallinga-Thie GM, Beigneux AP. (2010) Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circulation: Cardiovasc. Gen. 3:169–178. PMC2858258

Weinstein MM, Yin L, Tu Y, Wang X, Wu X, Castellani LW, Walzem RL, Lusis AL, Fong LG, Beigneux AP, Young SG. (2010) Chylomicronemia elicits atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 30:20–23. PMC2796285

2009

Olivecrona G, Ehrenborg E, Semb H, Makoveichuk E, Lindberg A, Hayden MR, Gin P, Davies BS, Weinstein MM, Fong LG, Beigneux AP, Young SG, Olivecrona T, Hernell O. (2009) Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J. Lipid Res. 51:1535–1545. PMC3035517

Beigneux AP, Gin P, Davies BS, Weinstein MM, Bensadoun A, Fong LG, Young SG. (2009) Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J. Biol. Chem. 284:30240–30247. PMC2781579

Beigneux AP, Franssen R, Bensadoun A, Gin P, Melford K, Peter J, Walzem RL, Weinstein MM, Davies BS, Kuivenhoven JA, Kastelein JJ, Fong LG, Dallinga-Thie GM, Young SG. (2009) Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler. Thromb. Vasc. Biol. 29:956–962. PMC2811263

Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG. (2009) GPIHBP1—a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J. Lipid Res. 50 Suppl:S57–62. PMC2674691

2008

Davies BS, Waki H, Beigneux AP, Farber E, Weinstein MM, Wilpitz DC, Tai L, Evans RM, Fong LG, Tontonoz P, Young SG. (2008) The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by PPARγ. Molec. Endocrin. 22:2496–2504. PMC2582544

Weinstein MM, Yin L, Beigneux AP, Davies BS, Gin P, Estrada K, Melford K, Bishop JR, Esko JD, Dallinga-Thie GM, Fong LG, Bensadoun A, Young SG. (2008) Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice. J. Biol. Chem. 12:34511–34518. PMC2596386

Beigneux AP, Gin P, Davies BS, Weinstein MM, Bensadoun A, Ryan RO, Fong LG, Young SG. (2008) Glycosylation of Asn-76 in mouse GPIHBP1 is critical for its appearance on the cell surface and the binding of chylomicrons and lipoprotein lipase. J. Lipid Res. 49:1312–1321. PMC3055742

2007

Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG. (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metabolism 5:279–291. PMC191391